initial version

This commit is contained in:
James 2024-04-29 09:09:52 +01:00
commit 5620f73fa1
9 changed files with 722 additions and 0 deletions

18
.atom-build.yml Normal file
View File

@ -0,0 +1,18 @@
cmd: bin/build
name: "All"
errorMatch:
- (?<file>[\/0-9a-zA-Z\._]+):(?<line>\d+):(?<col>\d+):\s+(?<message>.+)
targets:
Build:
cmd: bin/build
name: "Build"
errorMatch:
- (?<file>[\/0-9a-zA-Z\._]+):(?<line>\d+):(?<col>\d+):\s+(?<message>.+)
Erase:
cmd: esptool.py erase_flash
name: "Erase"
errorMatch:
- (?<file>[\/0-9a-zA-Z\._]+):(?<line>\d+):(?<col>\d+):\s+(?<message>.+)
Upload:
cmd: bin/flash Compiled/latest
name: "Upload"

3
.gitignore vendored Normal file
View File

@ -0,0 +1,3 @@
/Compiled/*
/build/
/compile_flags.h

414
ESPBMS.ino Normal file
View File

@ -0,0 +1,414 @@
#include "BLEDevice.h"
static BLEUUID serviceUUID("0000ff00-0000-1000-8000-00805f9b34fb"); //xiaoxiang bms service
static BLEUUID charUUID_rx("0000ff01-0000-1000-8000-00805f9b34fb"); //xiaoxiang bms rx id
static BLEUUID charUUID_tx("0000ff02-0000-1000-8000-00805f9b34fb"); //xiaoxiang bms tx id
typedef struct
{
byte start;
byte type;
byte status;
byte dataLen;
} bmsPacketHeaderStruct;
void setup() {
Serial.begin(115200);
BLEDevice::init(""); // Initialize BLE device
}
char currentName[128];
bool gotBasicInfo;
bool gotCellInfo;
void loop() {
Serial.printf("\r\n\r\n===============================\r\n\r\n");
Serial.println("Scanning...");
BLEScan* pBLEScan = BLEDevice::getScan(); // Create new scan
pBLEScan->setActiveScan(true); // Active scan uses more power, but get results faster
BLEScanResults foundDevices = pBLEScan->start(5); //seconds
Serial.println("Devices found: " + String(foundDevices.getCount()));
for (int i = 0; i < foundDevices.getCount(); i++) {
delay(1000);
Serial.printf("\r\n\r\n===============================\r\n\r\n");
BLEAdvertisedDevice advertisedDevice = foundDevices.getDevice(i);
Serial.println("\nFound Device: " + String(advertisedDevice.toString().c_str()));
std::string targetAddress = "d0:65:de:e5:89:76";
if (advertisedDevice.getAddress().toString() == targetAddress) {
Serial.println("Victron device found!");
decodeVictron(advertisedDevice);
break;
}
if(!advertisedDevice.isAdvertisingService(serviceUUID)) {
Serial.println("Device does not advertise the specified service UUID.");
continue;
}
BLEClient* pClient = BLEDevice::createClient();
Serial.println("Connecting to: " + String(advertisedDevice.getName().c_str()));
int retryCount = 0;
const int maxRetries = 5; // Maximum number of retries
while(retryCount < maxRetries) {
if(pClient->connect(&advertisedDevice)) {
Serial.println("Connected successfully.");
break; // Exit the loop if the connection is successful
} else {
Serial.println("Failed to connect. Retrying...");
retryCount++; // Increment the retry counter
delay(1000); // Optional: Wait for a second before retrying
}
}
if(retryCount == maxRetries) {
Serial.println("Failed to connect after retries.");
continue;
}
// Get remote service
Serial.println("Get remote service...");
BLERemoteService* pRemoteService = pClient->getService(serviceUUID);
if (pRemoteService == nullptr){
Serial.println(String("BLE: failed to find service UUID"));
Serial.print("Failed to find our service UUID: ");
Serial.println(serviceUUID.toString().c_str());
pClient->disconnect();
continue;
}
// Get BMS receive characteristic
Serial.println("Get BMS receive characteristic...");
BLERemoteCharacteristic* pRemoteCharacteristic_rx = pRemoteService->getCharacteristic(charUUID_rx);
if (pRemoteCharacteristic_rx == nullptr){
Serial.println(String("BLE: failed to find RX UUID"));
Serial.print("Failed to find rx UUID: ");
Serial.println(charUUID_rx.toString().c_str());
pClient->disconnect();
continue;
}
// Register callback for remote characteristic (receive channel)
Serial.println("Register callback for remote characteristic...");
if (pRemoteCharacteristic_rx->canNotify()){
pRemoteCharacteristic_rx->registerForNotify(MyNotifyCallback);
}else{
Serial.println(String("BLE: failed to register notification of remote characteristic"));
Serial.println("Failed to register notification of remote characteristic");
pClient->disconnect();
continue;
}
// Get BMS transmit characteristic
Serial.println("Get BMS transmit characteristic...");
BLERemoteCharacteristic* pRemoteCharacteristic_tx = pRemoteService->getCharacteristic(charUUID_tx);
if (pRemoteCharacteristic_tx == nullptr){
Serial.println(String("BLE: failed to find TX UUID"));
Serial.print("Failed to find tx UUID: ");
Serial.println(charUUID_tx.toString().c_str());
pClient->disconnect();
continue;
}
// Check whether tx is writeable
Serial.println("Check whether tx is writeable...");
if (!(pRemoteCharacteristic_tx->canWriteNoResponse())){
Serial.println(String("BLE: failed TX remote characteristic is not writable"));
Serial.println("Failed TX remote characteristic is not writable");
pClient->disconnect();
continue;
}
Serial.println("Get data...");
gotBasicInfo=false;
gotCellInfo=false;
std::__cxx11::string deviceName = advertisedDevice.getName();
strncpy(currentName, deviceName.c_str(), sizeof(currentName) - 1);
currentName[sizeof(currentName) - 1] = '\0'; // Ensure null-termination
// Convert to lowercase and replace spaces with dots
for (char* p = currentName; *p; ++p) {
*p = *p == ' ' ? '.' : *p;
}
unsigned long start=millis();
while( millis()-start<10000 && (gotBasicInfo==false || gotCellInfo==false) ){
// REQUEST BASIC INFO
if(gotBasicInfo==false){
Serial.println("Request Basic Info");
delay(500);
// header status command length data checksum footer
// DD A5 03 00 FF FD 77
uint8_t a_data[7] = {0xdd, 0xa5, 3, 0x0, 0xff, 0xfd, 0x77};
pRemoteCharacteristic_tx->writeValue(a_data, sizeof(a_data), false);
}
// REQUEST CELL INFO
if(gotCellInfo==false){
Serial.println("Request Cell Info");
delay(500);
// header status command length data checksum footer
// DD A5 03 00 FF FD 77
uint8_t b_data[7] = {0xdd, 0xa5, 4, 0x0, 0xff, 0xfc, 0x77};
pRemoteCharacteristic_tx->writeValue(b_data, sizeof(b_data), false);
}
}
pClient->disconnect();
}
Serial.println("Reboot!");
delay(100);
ESP.restart();
}
static void MyNotifyCallback(BLERemoteCharacteristic *pBLERemoteCharacteristic, uint8_t *pData, size_t length, bool isNotify){
//hexDump((char*)pData, length);
if(!bleCollectPacket((char *)pData, length)){
Serial.println("ERROR: packet could not be collected.");
}
}
void hexDump(const char *data, uint32_t dataSize)
{
Serial.println("HEX data:");
for (int i = 0; i < dataSize; i++)
{
Serial.printf("0x%x, ", data[i]);
}
Serial.println("");
}
bool bleCollectPacket(char *data, uint32_t dataSize) // reconstruct packet, called by notifyCallback function
{
static uint8_t packetstate = 0; //0 - empty, 1 - first half of packet received, 2- second half of packet received
// packet sizes:
// (packet ID 03) = 4 (header) + 23 + 2*N_NTCs + 2 (checksum) + 1 (stop)
// (packet ID 04) = 4 (header) + 2*NUM_CELLS + 2 (checksum) + 1 (stop)
static uint8_t packetbuff[4 + 2*25 + 2 + 1] = {0x0}; // buffer size suitable for up to 25 cells
static uint32_t totalDataSize = 0;
bool retVal = false;
//hexDump(data,dataSize);
if(totalDataSize + dataSize > sizeof(packetbuff)){
Serial.printf("ERROR: datasize is overlength.");
Serial.println(
String("ERROR: datasize is overlength. ") +
String("allocated=") +
String(sizeof(packetbuff)) +
String(", size=") +
String(totalDataSize + dataSize)
);
totalDataSize = 0;
packetstate = 0;
retVal = false;
}
else if (data[0] == 0xdd && packetstate == 0) // probably got 1st half of packet
{
packetstate = 1;
for (uint8_t i = 0; i < dataSize; i++)
{
packetbuff[i] = data[i];
}
totalDataSize = dataSize;
retVal = true;
if (data[dataSize - 1] == 0x77) {
//its full packets
packetstate = 2;
}
}
else if (data[dataSize - 1] == 0x77 && packetstate == 1) //probably got 2nd half of the packet
{
packetstate = 2;
for (uint8_t i = 0; i < dataSize; i++)
{
packetbuff[i + totalDataSize] = data[i];
}
totalDataSize += dataSize;
retVal = true;
}
if (packetstate == 2) //got full packet
{
uint8_t packet[totalDataSize];
memcpy(packet, packetbuff, totalDataSize);
bmsProcessPacket(packet); //pass pointer to retrieved packet to processing function
packetstate = 0;
totalDataSize = 0;
retVal = true;
}
return retVal;
}
bool bmsProcessPacket(byte *packet)
{
bool isValid = isPacketValid(packet);
if (isValid != true)
{
Serial.println("Invalid packer received");
return false;
}
bmsPacketHeaderStruct *pHeader = (bmsPacketHeaderStruct *)packet;
byte *data = packet + sizeof(bmsPacketHeaderStruct); // TODO Fix this ugly hack
unsigned int dataLen = pHeader->dataLen;
bool result = false;
// find packet type (basic info or cell info)
switch (pHeader->type)
{
case 3:
{
// Process basic info
result = processBasicInfo(data, dataLen);
break;
}
case 4:
{
// Process cell info
result = processCellInfo(data, dataLen);
break;
}
default:
result = false;
Serial.printf("Unsupported packet type detected. Type: %d", pHeader->type);
}
return result;
}
bool processBasicInfo(byte *data, unsigned int dataLen){
//// NICER!!!: https://github.com/neilsheps/overkill-xiaoxiang-jbd-bms-ble-reader/blob/main/src/main.cpp
uint16_t Volts = ((uint32_t)two_ints_into16(data[0], data[1])) * 10; // Resolution 10 mV -> convert to milivolts eg 4895 > 48950mV
int32_t Amps = ((int32_t)two_ints_into16(data[2], data[3])) * 10; // Resolution 10 mA -> convert to miliamps
int32_t Watts = Volts * Amps / 1000000; // W
//Serial.printf("Remaining Capacity: %4.2fAhr\n", ((float)(data[4] * 256 + data[5]))/100);
//Serial.printf("Nominal Capacity: %4.2fAhr\n", ((float)(data[6] * 256 + data[7]))/100);
uint32_t CapacityRemainAh = ((uint16_t)two_ints_into16(data[4], data[5])) * 10;
uint8_t CapacityRemainPercent = ((uint8_t)data[19]);
uint16_t Temp1 = (((uint16_t)two_ints_into16(data[23], data[24])) - 2731);
uint16_t Temp2 = (((uint16_t)two_ints_into16(data[25], data[26])) - 2731);
uint16_t BalanceCodeLow = (two_ints_into16(data[12], data[13]));
uint16_t BalanceCodeHigh = (two_ints_into16(data[14], data[15]));
uint8_t MosfetStatus = ((byte)data[20]);
Serial.printf(">>>RC.%s.Voltage %f\r\n",currentName, (float)Volts / 1000);
Serial.printf(">>>RC.%s.Amps %f\r\n",currentName, (float)Amps / 1000);
Serial.printf(">>>RC.%s.Watts %f\r\n",currentName, (float)Watts);
Serial.printf(">>>RC.%s.Capacity_Remain_Ah %f\r\n",currentName, (float)CapacityRemainAh / 1000);
Serial.printf(">>>RC.%s.Capacity_Remain_Wh %f\r\n",currentName, ((float)(CapacityRemainAh) / 1000) * ((float)(Volts) / 1000));
Serial.printf(">>>RC.%s.Capacity_Remain_Percent %d\r\n",currentName, CapacityRemainPercent);
Serial.printf(">>>RC.%s.Temp1 %f\r\n",currentName, (float)Temp1 / 10);
Serial.printf(">>>RC.%s.Temp2 %f\r\n",currentName, (float)Temp2 / 10);
/*
Serial.printf("%s Balance Code Low: 0x%x\r\n",currentName, BalanceCodeLow);
Serial.printf("%s Balance Code High: 0x%x\r\n",currentName, BalanceCodeHigh);
Serial.printf("%s Mosfet Status: 0x%x\r\n",currentName, MosfetStatus);
*/
gotBasicInfo=true;
return true;
}
bool processCellInfo(byte *data, unsigned int dataLen)
{
uint16_t _cellSum;
uint16_t _cellMin = 5000;
uint16_t _cellMax = 0;
uint16_t _cellAvg;
uint16_t _cellDiff;
uint8_t NumOfCells = dataLen / 2; // data contains 2 bytes per cell
//go trough individual cells
for (byte i = 0; i < dataLen / 2; i++){
int CellVolt = ((uint16_t)two_ints_into16(data[i * 2], data[i * 2 + 1])); // Resolution 1 mV
_cellSum += CellVolt;
if (CellVolt > _cellMax)
{
_cellMax = CellVolt;
}
if (CellVolt < _cellMin)
{
_cellMin = CellVolt;
}
Serial.printf(">>>RC.%s.Cell.%d.Voltage %f\r\n",currentName, i+1,(float)CellVolt/1000);
}
Serial.printf(">>>RC.%s.Max_Cell_Voltage %f\r\n",currentName, (float)_cellMax / 1000);
Serial.printf(">>>RC.%s.Min_Cell_Voltage %f\r\n",currentName, (float)_cellMin / 1000);
Serial.printf(">>>RC.%s.Difference_Cell_Voltage %f\r\n",currentName, (float)(_cellMax - _cellMin) / 1000);
Serial.printf(">>>RC.%s.Average_Cell_Voltage %f\r\n",currentName, (float)(_cellSum / NumOfCells) / 1000);
gotCellInfo=true;
return true;
}
bool isPacketValid(byte *packet) //check if packet is valid
{
if (packet == nullptr){
return false;
}
bmsPacketHeaderStruct *pHeader = (bmsPacketHeaderStruct *)packet;
int checksumPos = pHeader->dataLen + 2; // status + data len + data
int offset = 2; // header 0xDD and command type are not in data length
if (packet[0] != 0xDD){
// start bit missing
return false;
}
if (packet[offset + checksumPos + 2] != 0x77){
// stop bit missing
return false;
}
byte checksum = 0;
for (int i = 0; i < checksumPos; i++){
checksum += packet[offset + i];
}
checksum = ((checksum ^ 0xFF) + 1) & 0xFF;
if (checksum != packet[offset + checksumPos + 1]){
return false;
}
return true;
}
int16_t two_ints_into16(int highbyte, int lowbyte) // turns two bytes into a single long integer
{
int16_t result = (highbyte);
result <<= 8; //Left shift 8 bits,
result = (result | lowbyte); //OR operation, merge the two
return result;
}

57
bin/2graphite.py Normal file
View File

@ -0,0 +1,57 @@
import asyncio
import aiohttp
import sys
import serial_asyncio # Ensure this package is installed
def parse_to_graphite(data):
results = []
lines = data.strip().split('\n')
for line in lines:
if line.startswith('>>>'):
metric_path = line[3:].strip() # Remove the ">>>" prefix and any leading/trailing whitespace
results.append(metric_path)
return results
async def send_to_graphite(data, session, api_url):
for message in data:
#print(f"Sending data to API: {message}") # Debug message for sending data
try:
# Sending raw metric path directly as plain text
headers = {'Content-Type': 'text/plain'}
async with session.post(api_url, data=message, headers=headers) as response:
if response.status != 200:
print(f"Failed to send data: {response.status}", await response.text())
except Exception as e:
print(f"Error sending data: {e}")
async def handle_serial(reader, api_url):
session = aiohttp.ClientSession()
try:
while True:
line = await reader.readline()
if not line:
break
line = line.decode('utf-8')
print(line.strip()) # echo output for received line
graphite_data = parse_to_graphite(line)
if graphite_data:
await send_to_graphite(graphite_data, session, api_url)
finally:
await session.close()
async def main():
if len(sys.argv) < 3:
print("Usage: python script.py <serial_device> <api_url>")
sys.exit(1)
serial_device = sys.argv[1]
api_url = sys.argv[2]
baud_rate = 115200 # You can modify this as needed
# Creating the connection to the serial port
reader, _ = await serial_asyncio.open_serial_connection(url=serial_device, baudrate=baud_rate)
await handle_serial(reader, api_url)
if __name__ == '__main__':
asyncio.run(main())

BIN
bin/boot_app0.bin Normal file

Binary file not shown.

BIN
bin/bootloader_qio_80m.bin Normal file

Binary file not shown.

17
bin/build Executable file
View File

@ -0,0 +1,17 @@
#!/bin/bash
if [ ! -d "Compiled" ] ; then mkdir Compiled ; fi
if [ "${DRONE_TAG}" ] ; then
NAME=${DRONE_TAG}
elif [ "${DRONE_BRANCH}" ] ; then
NAME=${DRONE_BRANCH}-${DRONE_BUILD_NUMBER}
else
NAME=`git symbolic-ref --short HEAD`
fi
echo "#define VERSION \"${NAME}\"" >> compile_flags.h
arduino-cli compile $LIBS -e -b esp32:esp32:esp32 || exit 1
mv build/esp32.esp32.esp32/*.ino.bin Compiled/${NAME}.bin
mv build/esp32.esp32.esp32/*.ino.elf Compiled/${NAME}.elf
mv build/esp32.esp32.esp32/*.ino.partitions.bin Compiled/${NAME}.partitions.bin
bin/flash Compiled/${NAME}.bin

17
bin/flash Executable file
View File

@ -0,0 +1,17 @@
#!/bin/sh
BASENAME=${1%.bin};
esptool.py \
-b 921600 \
--chip esp32 \
--before default_reset \
--after hard_reset \
write_flash \
-z \
--flash_mode dio \
--flash_freq 80m \
--flash_size detect \
0x10000 $BASENAME.bin \
0x8000 $BASENAME.partitions.bin \
0xe000 bin/boot_app0.bin \
0x1000 bin/bootloader_qio_80m.bin

196
victron.ino Normal file
View File

@ -0,0 +1,196 @@
// credit to: https://github.com/hoberman/Victron_BLE_Advertising_example
#include <aes/esp_aes.h> // AES library for decrypting the Victron manufacturer data.
uint8_t key[16]={0xd7,0x93,0xc8,0xb1,0x79,0x18,0x4c,0x97,0x97,0x6d,0x12,0x27,0xf2,0x23,0x48,0x6b};
int keyBits=128; // Number of bits for AES-CTR decrypt.
// Victron docs on the manufacturer data in advertisement packets can be found at:
// https://community.victronenergy.com/storage/attachments/48745-extra-manufacturer-data-2022-12-14.pdf
//
// Usage/style note: I use uint16_t in places where I need to force 16-bit unsigned integers
// instead of whatever the compiler/architecture might decide to use. I might not need to do
// the same with byte variables, but I'll do it anyway just to be at least a little consistent.
// Must use the "packed" attribute to make sure the compiler doesn't add any padding to deal with
// word alignment.
typedef struct {
uint16_t vendorID; // vendor ID
uint8_t beaconType; // Should be 0x10 (Product Advertisement) for the packets we want
uint8_t unknownData1[3]; // Unknown data
uint8_t victronRecordType; // Should be 0x01 (Solar Charger) for the packets we want
uint16_t nonceDataCounter; // Nonce
uint8_t encryptKeyMatch; // Should match pre-shared encryption key byte 0
uint8_t victronEncryptedData[21]; // (31 bytes max per BLE spec - size of previous elements)
uint8_t nullPad; // extra byte because toCharArray() adds a \0 byte.
} __attribute__((packed)) victronManufacturerData;
// Must use the "packed" attribute to make sure the compiler doesn't add any padding to deal with
// word alignment.
typedef struct {
uint8_t deviceState;
uint8_t errorCode;
int16_t batteryVoltage;
int16_t batteryCurrent;
uint16_t todayYield;
uint16_t inputPower;
uint8_t outputCurrentLo; // Low 8 bits of output current (in 0.1 Amp increments)
uint8_t outputCurrentHi; // High 1 bit of output current (must mask off unused bits)
uint8_t unused[4]; // Not currently used by Vistron, but it could be in the future.
} __attribute__((packed)) victronPanelData;
// FYI, here are Device State values. I haven't seen ones with '???' so I don't know
// if they exist or not or what they might mean:
// 0 = no charge from solar
// 1 = ???
// 2 = ???
// 3 = bulk charge
// 4 = absorption charge
// 5 = float
// 6 = ???
// 7 = equalization
// I've also seen a value '245' for about a second when my solar panel (simulated by a
// benchtop power supply) transitions from off/low voltage to on/higher voltage. There
// be others, but I haven't seen them.
void decodeVictron(BLEAdvertisedDevice advertisedDevice) {
#define manDataSizeMax 31 // BLE specs say no more than 31 bytes, but see comments below!
// See if we have manufacturer data and then look to see if it's coming from a Victron device.
if (advertisedDevice.haveManufacturerData() == true) {
// Note: This comment (and maybe some code?) needs to be adjusted so it's not so
// specific to String-vs-std:string. I'll leave it as-is for now so you at least
// understand why I have an extra byte added to the manCharBuf array.
//
// Here's the thing: BLE specs say our manufacturer data can be a max of 31 bytes.
// But: The library code puts this data into a String, which we will then copy to
// a character (i.e., byte) buffer using String.toCharArray(). Assuming we have the
// full 31 bytes of manufacturer data allowed by the BLE spec, we'll need to size our
// buffer with an extra byte for a null terminator. Our toCharArray() call will need
// to specify *32* bytes so it will copy 31 bytes of data with a null terminator
// at the end.
uint8_t manCharBuf[manDataSizeMax+1];
#ifdef USE_String
String manData = advertisedDevice.getManufacturerData(); // lib code returns String.
#else
std::string manData = advertisedDevice.getManufacturerData(); // lib code returns std::string
#endif
int manDataSize=manData.length(); // This does not count the null at the end.
// Copy the data from the String to a byte array. Must have the +1 so we
// don't lose the last character to the null terminator.
#ifdef USE_String
manData.toCharArray((char *)manCharBuf,manDataSize+1);
#else
manData.copy((char *)manCharBuf, manDataSize+1);
#endif
// Now let's setup a pointer to a struct to get to the data more cleanly.
victronManufacturerData * vicData=(victronManufacturerData *)manCharBuf;
// ignore this packet if the Vendor ID isn't Victron.
if (vicData->vendorID!=0x02e1) {
return;
}
// ignore this packet if it isn't type 0x01 (Solar Charger).
if (vicData->victronRecordType != 0x01) {
return;
}
// Not all packets contain a device name, so if we get one we'll save it and use it from now on.
if (advertisedDevice.haveName()) {
// This works the same whether getName() returns String or std::string.
strcpy(currentName,advertisedDevice.getName().c_str());
}
if (vicData->encryptKeyMatch != key[0]) {
Serial.printf("Packet encryption key byte 0x%2.2x doesn't match configured key[0] byte 0x%2.2x\n",
vicData->encryptKeyMatch, key[0]);
return;
}
uint8_t inputData[16];
uint8_t outputData[16]={0}; // i don't really need to initialize the output.
// The number of encrypted bytes is given by the number of bytes in the manufacturer
// data as a whole minus the number of bytes (10) in the header part of the data.
int encrDataSize=manDataSize-10;
for (int i=0; i<encrDataSize; i++) {
inputData[i]=vicData->victronEncryptedData[i]; // copy for our decrypt below while I figure this out.
}
esp_aes_context ctx;
esp_aes_init(&ctx);
auto status = esp_aes_setkey(&ctx, key, keyBits);
if (status != 0) {
Serial.printf(" Error during esp_aes_setkey operation (%i).\n",status);
esp_aes_free(&ctx);
return;
}
// construct the 16-byte nonce counter array by piecing it together byte-by-byte.
uint8_t data_counter_lsb=(vicData->nonceDataCounter) & 0xff;
uint8_t data_counter_msb=((vicData->nonceDataCounter) >> 8) & 0xff;
u_int8_t nonce_counter[16] = {data_counter_lsb, data_counter_msb, 0};
u_int8_t stream_block[16] = {0};
size_t nonce_offset=0;
status = esp_aes_crypt_ctr(&ctx, encrDataSize, &nonce_offset, nonce_counter, stream_block, inputData, outputData);
if (status != 0) {
Serial.printf("Error during esp_aes_crypt_ctr operation (%i).",status);
esp_aes_free(&ctx);
return;
}
esp_aes_free(&ctx);
// Now do our same struct magic so we can get to the data more easily.
victronPanelData * victronData = (victronPanelData *) outputData;
// Getting to these elements is easier using the struct instead of
// hacking around with outputData[x] references.
uint8_t deviceState=victronData->deviceState;
uint8_t errorCode=victronData->errorCode;
float batteryVoltage=float(victronData->batteryVoltage)*0.01;
float batteryCurrent=float(victronData->batteryCurrent)*0.1;
float todayYield=float(victronData->todayYield)*0.01*1000;
uint16_t inputPower=victronData->inputPower; // this is in watts; no conversion needed
// Getting the output current takes some magic because of the way they have the
// 9-bit value packed into two bytes. The first byte has the low 8 bits of the count
// and the second byte has the upper (most significant) bit of the 9-bit value plus some
// There's some other junk in the remaining 7 bits - i'm not sure if it's useful for
// anything else but we can't use it here! - so we will mask them off. Then combine the
// two bye components to get an integer value in 0.1 Amp increments.
int integerOutputCurrent=((victronData->outputCurrentHi & 0x01)<<9) | victronData->outputCurrentLo;
float outputCurrent=float(integerOutputCurrent)*0.1;
// I don't know why, but every so often we'll get half-corrupted data from the Victron. As
// far as I can tell it's not a decryption issue because we (usually) get voltage data that
// agrees with non-corrupted records.
//
// Towards the goal of filtering out this noise, I've found that I've rarely (or never) seen
// corrupted data when the 'unused' bits of the outputCurrent MSB equal 0xfe. We'll use this
// as a litmus test here.
uint8_t unusedBits=victronData->outputCurrentHi & 0xfe;
if (unusedBits != 0xfe) {
return;
}
Serial.printf(">>>RC.MPPT.1.Battery_Volts %f\r\n",batteryVoltage);
Serial.printf(">>>RC.MPPT.1.Battery_Amps %f\r\n",batteryCurrent);
Serial.printf(">>>RC.MPPT.1.Battery_Watts %f\r\n",batteryVoltage*batteryCurrent);
Serial.printf(">>>RC.MPPT.1.Solar_Watts %f\r\n",inputPower);
Serial.printf(">>>RC.MPPT.1.Output_Current %f\r\n",outputCurrent);
Serial.printf(">>>RC.MPPT.1.Yield %f\r\n",todayYield);
Serial.printf(">>>RC.MPPT.1.State %d\r\n",deviceState);
}
}