bool isPacketValid(byte *packet) //check if packet is valid { if (packet == nullptr){ return false; } bmsPacketHeaderStruct *pHeader = (bmsPacketHeaderStruct *)packet; int checksumPos = pHeader->dataLen + 2; // status + data len + data int offset = 2; // header 0xDD and command type are not in data length if (packet[0] != 0xDD){ // start bit missing return false; } if (packet[offset + checksumPos + 2] != 0x77){ // stop bit missing return false; } byte checksum = 0; for (int i = 0; i < checksumPos; i++){ checksum += packet[offset + i]; } checksum = ((checksum ^ 0xFF) + 1) & 0xFF; if (checksum != packet[offset + checksumPos + 1]){ return false; } return true; } bool processBasicInfo(packBasicInfoStruct *output, byte *data, unsigned int dataLen) { // Expected data len if (dataLen != 0x1B) { return false; } output->Volts = ((uint32_t)two_ints_into16(data[0], data[1])) * 10; // Resolution 10 mV -> convert to milivolts eg 4895 > 48950mV output->Amps = ((int32_t)two_ints_into16(data[2], data[3])) * 10; // Resolution 10 mA -> convert to miliamps output->Watts = output->Volts * output->Amps / 1000000; // W output->CapacityRemainAh = ((uint16_t)two_ints_into16(data[4], data[5])) * 10; output->CapacityRemainPercent = ((uint8_t)data[19]); output->Temp1 = (((uint16_t)two_ints_into16(data[23], data[24])) - 2731); output->Temp2 = (((uint16_t)two_ints_into16(data[25], data[26])) - 2731); output->BalanceCodeLow = (two_ints_into16(data[12], data[13])); output->BalanceCodeHigh = (two_ints_into16(data[14], data[15])); output->MosfetStatus = ((byte)data[20]); return true; } bool processCellInfo(packCellInfoStruct *output, byte *data, unsigned int dataLen) { uint16_t _cellSum; uint16_t _cellMin = 5000; uint16_t _cellMax = 0; uint16_t _cellAvg; uint16_t _cellDiff; output->NumOfCells = dataLen / 2; // data contains 2 bytes per cell //go trough individual cells for (byte i = 0; i < dataLen / 2; i++) { output->CellVolt[i] = ((uint16_t)two_ints_into16(data[i * 2], data[i * 2 + 1])); // Resolution 1 mV _cellSum += output->CellVolt[i]; if (output->CellVolt[i] > _cellMax) { _cellMax = output->CellVolt[i]; } if (output->CellVolt[i] < _cellMin) { _cellMin = output->CellVolt[i]; } } output->CellMin = _cellMin; output->CellMax = _cellMax; output->CellDiff = _cellMax - _cellMin; output->CellAvg = _cellSum / output->NumOfCells; return true; } bool bmsProcessPacket(byte *packet) { bool isValid = isPacketValid(packet); if (isValid != true) { Serial.println("Invalid packer received"); return false; } bmsPacketHeaderStruct *pHeader = (bmsPacketHeaderStruct *)packet; byte *data = packet + sizeof(bmsPacketHeaderStruct); // TODO Fix this ugly hack unsigned int dataLen = pHeader->dataLen; bool result = false; // find packet type (basic info or cell info) switch (pHeader->type) { case cBasicInfo: { // Process basic info result = processBasicInfo(&packBasicInfo, data, dataLen); if(result==true){ ble_packets_received |= 0b01; bms_last_update_time=millis(); } break; } case cCellInfo: { // Process cell info result = processCellInfo(&packCellInfo, data, dataLen); if(result==true){ ble_packets_received |= 0b10; bms_last_update_time=millis(); } break; } default: result = false; Serial.printf("Unsupported packet type detected. Type: %d", pHeader->type); } return result; } bool bleCollectPacket(char *data, uint32_t dataSize) // reconstruct packet, called by notifyCallback function { static uint8_t packetstate = 0; //0 - empty, 1 - first half of packet received, 2- second half of packet received // packet sizes: // (packet ID 03) = 4 (header) + 23 + 2*N_NTCs + 2 (checksum) + 1 (stop) // (packet ID 04) = 4 (header) + 2*NUM_CELLS + 2 (checksum) + 1 (stop) static uint8_t packetbuff[4 + 2*25 + 2 + 1] = {0x0}; // buffer size suitable for up to 25 cells static uint32_t totalDataSize = 0; bool retVal = false; //hexDump(data,dataSize); if(totalDataSize + dataSize > sizeof(packetbuff)){ Serial.printf("ERROR: datasize is overlength."); debug( String("ERROR: datasize is overlength. ") + String("allocated=") + String(sizeof(packetbuff)) + String(", size=") + String(totalDataSize + dataSize) ); totalDataSize = 0; packetstate = 0; retVal = false; } else if (data[0] == 0xdd && packetstate == 0) // probably got 1st half of packet { packetstate = 1; for (uint8_t i = 0; i < dataSize; i++) { packetbuff[i] = data[i]; } totalDataSize = dataSize; retVal = true; } else if (data[dataSize - 1] == 0x77 && packetstate == 1) //probably got 2nd half of the packet { packetstate = 2; for (uint8_t i = 0; i < dataSize; i++) { packetbuff[i + totalDataSize] = data[i]; } totalDataSize += dataSize; retVal = true; } if (packetstate == 2) //got full packet { uint8_t packet[totalDataSize]; memcpy(packet, packetbuff, totalDataSize); bmsProcessPacket(packet); //pass pointer to retrieved packet to processing function packetstate = 0; totalDataSize = 0; retVal = true; } return retVal; } bool bmsRequestBasicInfo(){ // header status command length data checksum footer // DD A5 03 00 FF FD 77 uint8_t data[7] = {0xdd, 0xa5, cBasicInfo, 0x0, 0xff, 0xfd, 0x77}; return sendCommand(data, sizeof(data)); } bool bmsRequestCellInfo(){ // header status command length data checksum footer // DD A5 04 00 FF FC 77 uint8_t data[7] = {0xdd, 0xa5, cCellInfo, 0x0, 0xff, 0xfc, 0x77}; return sendCommand(data, sizeof(data)); } /* void printBasicInfo() //debug all data to uart { Serial.printf("Total voltage: %f\n", (float)packBasicInfo.Volts / 1000); Serial.printf("Amps: %f\n", (float)packBasicInfo.Amps / 1000); Serial.printf("CapacityRemainAh: %f\n", (float)packBasicInfo.CapacityRemainAh / 1000); Serial.printf("CapacityRemainPercent: %d\n", packBasicInfo.CapacityRemainPercent); Serial.printf("Temp1: %f\n", (float)packBasicInfo.Temp1 / 10); Serial.printf("Temp2: %f\n", (float)packBasicInfo.Temp2 / 10); Serial.printf("Balance Code Low: 0x%x\n", packBasicInfo.BalanceCodeLow); Serial.printf("Balance Code High: 0x%x\n", packBasicInfo.BalanceCodeHigh); Serial.printf("Mosfet Status: 0x%x\n", packBasicInfo.MosfetStatus); } void printCellInfo() //debug all data to uart { Serial.printf("Number of cells: %u\n", packCellInfo.NumOfCells); for (byte i = 1; i <= packCellInfo.NumOfCells; i++) { Serial.printf("Cell no. %u", i); Serial.printf(" %f\n", (float)packCellInfo.CellVolt[i - 1] / 1000); } Serial.printf("Max cell volt: %f\n", (float)packCellInfo.CellMax / 1000); Serial.printf("Min cell volt: %f\n", (float)packCellInfo.CellMin / 1000); Serial.printf("Difference cell volt: %f\n", (float)packCellInfo.CellDiff / 1000); Serial.printf("Average cell volt: %f\n", (float)packCellInfo.CellAvg / 1000); Serial.println(); } void constructBigString() //debug all data to uart { stringBuffer[0] = '\0'; //clear old data snprintf(stringBuffer, STRINGBUFFERSIZE, "Total voltage: %f\n", (float)packBasicInfo.Volts / 1000); snprintf(stringBuffer, STRINGBUFFERSIZE, "Amps: %f\n", (float)packBasicInfo.Amps / 1000); snprintf(stringBuffer, STRINGBUFFERSIZE, "CapacityRemainAh: %f\n", (float)packBasicInfo.CapacityRemainAh / 1000); snprintf(stringBuffer, STRINGBUFFERSIZE, "CapacityRemainPercent: %d\n", packBasicInfo.CapacityRemainPercent); snprintf(stringBuffer, STRINGBUFFERSIZE, "Temp1: %f\n", (float)packBasicInfo.Temp1 / 10); snprintf(stringBuffer, STRINGBUFFERSIZE, "Temp2: %f\n", (float)packBasicInfo.Temp2 / 10); snprintf(stringBuffer, STRINGBUFFERSIZE, "Balance Code Low: 0x%x\n", packBasicInfo.BalanceCodeLow); snprintf(stringBuffer, STRINGBUFFERSIZE, "Balance Code High: 0x%x\n", packBasicInfo.BalanceCodeHigh); snprintf(stringBuffer, STRINGBUFFERSIZE, "Mosfet Status: 0x%x\n", packBasicInfo.MosfetStatus); snprintf(stringBuffer, STRINGBUFFERSIZE, "Number of cells: %u\n", packCellInfo.NumOfCells); for (byte i = 1; i <= packCellInfo.NumOfCells; i++) { snprintf(stringBuffer, STRINGBUFFERSIZE, "Cell no. %u", i); snprintf(stringBuffer, STRINGBUFFERSIZE, " %f\n", (float)packCellInfo.CellVolt[i - 1] / 1000); } snprintf(stringBuffer, STRINGBUFFERSIZE, "Max cell volt: %f\n", (float)packCellInfo.CellMax / 1000); snprintf(stringBuffer, STRINGBUFFERSIZE, "Min cell volt: %f\n", (float)packCellInfo.CellMin / 1000); snprintf(stringBuffer, STRINGBUFFERSIZE, "Difference cell volt: %f\n", (float)packCellInfo.CellDiff / 1000); snprintf(stringBuffer, STRINGBUFFERSIZE, "Average cell volt: %f\n", (float)packCellInfo.CellAvg / 1000); snprintf(stringBuffer, STRINGBUFFERSIZE, "\n"); } void hexDump(const char *data, uint32_t dataSize) //debug function { Serial.println("HEX data:"); for (int i = 0; i < dataSize; i++) { Serial.printf("0x%x, ", data[i]); } Serial.println(""); } */ int16_t two_ints_into16(int highbyte, int lowbyte) // turns two bytes into a single long integer { int16_t result = (highbyte); result <<= 8; //Left shift 8 bits, result = (result | lowbyte); //OR operation, merge the two return result; }